\(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\) [664]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 281 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (3 a^2+b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2/3*a*sin(d*x+c)*sec(d*x+c)^(1/2)/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)+4/3*(a^2+b^2)*sin(d*x+c)*sec(d*x+c)^(1/2)
/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)-2/3*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*
d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a/(a^2-b^2)/d/(a+b*sec(d*x
+c))^(1/2)-2/3*(3*a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2
)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a/(a^2-b^2)^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3929, 4185, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {4 \left (a^2+b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}+\frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {2 b \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (3 a^2+b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a d \left (a^2-b^2\right )^2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \]

[In]

Int[Sec[c + d*x]^(3/2)/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-2*b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(3*a*(a^2 -
 b^2)*d*Sqrt[a + b*Sec[c + d*x]]) - (2*(3*a^2 + b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c +
d*x]])/(3*a*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*a*Sqrt[Sec[c + d*x]]*S
in[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (4*(a^2 + b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3
*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3929

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a*d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 2)/(f*(m + 1)*(a^2 - b^2))), x] - Dist[d^2/((
m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(a*(n - 2) + b*(m + 1)*Csc[e +
f*x] - a*(m + n)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && Lt
Q[1, n, 2] && IntegersQ[2*m, 2*n]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4185

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {2 \int \frac {-\frac {a}{2}-\frac {3}{2} b \sec (c+d x)+a \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 \left (a^2-b^2\right )} \\ & = \frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {4 \int \frac {\frac {1}{4} a \left (3 a^2+b^2\right )+a^2 b \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2} \\ & = \frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {b \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )}-\frac {\left (3 a^2+b^2\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a \left (a^2-b^2\right )^2} \\ & = \frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (3 a^2+b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (3 a^2+b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = -\frac {2 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \left (3 a^2+b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 a \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {4 \left (a^2+b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.00 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.63 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\frac {\sec ^{\frac {5}{2}}(c+d x) \left (-\frac {2 (a+b) \left (\frac {b+a \cos (c+d x)}{a+b}\right )^{5/2} \left (\left (3 a^2+b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+(a-b) b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )\right )}{a (a-b)^2}+\frac {2 (b+a \cos (c+d x)) \left (2 b \left (a^2+b^2\right )+a \left (3 a^2+b^2\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2}\right )}{3 d (a+b \sec (c+d x))^{5/2}} \]

[In]

Integrate[Sec[c + d*x]^(3/2)/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(Sec[c + d*x]^(5/2)*((-2*(a + b)*((b + a*Cos[c + d*x])/(a + b))^(5/2)*((3*a^2 + b^2)*EllipticE[(c + d*x)/2, (2
*a)/(a + b)] + (a - b)*b*EllipticF[(c + d*x)/2, (2*a)/(a + b)]))/(a*(a - b)^2) + (2*(b + a*Cos[c + d*x])*(2*b*
(a^2 + b^2) + a*(3*a^2 + b^2)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2))/(3*d*(a + b*Sec[c + d*x])^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2311\) vs. \(2(311)=622\).

Time = 5.32 (sec) , antiderivative size = 2312, normalized size of antiderivative = 8.23

method result size
default \(\text {Expression too large to display}\) \(2312\)

[In]

int(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/d/(a-b)/(a+b)^2/a/((a-b)/(a+b))^(1/2)*(-5*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/
(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+2*Elli
pticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+
a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)+6*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),
(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c
)+EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+
b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)+2*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*
x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2*cos
(d*x+c)^2-EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c
)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a
*b^2*cos(d*x+c)^2+EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^3+EllipticF(((a-b)/(a+b))^(1/2)*(-c
ot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))
^(1/2)*a^2*b*cos(d*x+c)^3+3*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+EllipticE(((a-b)/(a+b))
^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(
d*x+c)+1))^(1/2)*b^3-3*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*
x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b+EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c
)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a
*b^2+3*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-3*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),
(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)-
((a-b)/(a+b))^(1/2)*b^3*sin(d*x+c)+3*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/
2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^3-3*EllipticF(((a-
b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^3+6*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a
-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2+Elliptic
E(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2-6*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a
+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2+3*
EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)+2*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)
),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c
)+((a-b)/(a+b))^(1/2)*a*b^2*sin(d*x+c)-2*((a-b)/(a+b))^(1/2)*a^2*b*sin(d*x+c)-3*((a-b)/(a+b))^(1/2)*a^3*cos(d*
x+c)*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)*sin(d*x+c))*(a+b*sec(d*x+c))^(1/2)*sec(d*x+c)^(3/2)*cos(d
*x+c)^2/(b+a*cos(d*x+c))^2/(cos(d*x+c)+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.14 (sec) , antiderivative size = 759, normalized size of antiderivative = 2.70 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 \, \sqrt {2} {\left (-3 i \, a^{2} b^{3} + i \, b^{5} + {\left (-3 i \, a^{4} b + i \, a^{2} b^{3}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (-3 i \, a^{3} b^{2} + i \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 2 \, \sqrt {2} {\left (3 i \, a^{2} b^{3} - i \, b^{5} + {\left (3 i \, a^{4} b - i \, a^{2} b^{3}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 i \, a^{3} b^{2} - i \, a b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 \, \sqrt {2} {\left (3 i \, a^{3} b^{2} + i \, a b^{4} + {\left (3 i \, a^{5} + i \, a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 i \, a^{4} b + i \, a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 3 \, \sqrt {2} {\left (-3 i \, a^{3} b^{2} - i \, a b^{4} + {\left (-3 i \, a^{5} - i \, a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (-3 i \, a^{4} b - i \, a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - \frac {6 \, {\left ({\left (3 \, a^{5} + a^{3} b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{4} b + a^{2} b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{9 \, {\left ({\left (a^{8} - 2 \, a^{6} b^{2} + a^{4} b^{4}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{7} b - 2 \, a^{5} b^{3} + a^{3} b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b^{2} - 2 \, a^{4} b^{4} + a^{2} b^{6}\right )} d\right )}} \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/9*(2*sqrt(2)*(-3*I*a^2*b^3 + I*b^5 + (-3*I*a^4*b + I*a^2*b^3)*cos(d*x + c)^2 + 2*(-3*I*a^3*b^2 + I*a*b^4)*c
os(d*x + c))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*
x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + 2*sqrt(2)*(3*I*a^2*b^3 - I*b^5 + (3*I*a^4*b - I*a^2*b^3)*cos(d*x + c)^
2 + 2*(3*I*a^3*b^2 - I*a*b^4)*cos(d*x + c))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*
b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) + 3*sqrt(2)*(3*I*a^3*b^2 + I*a*b^4 + (3*I
*a^5 + I*a^3*b^2)*cos(d*x + c)^2 + 2*(3*I*a^4*b + I*a^2*b^3)*cos(d*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2
 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3
)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) + 3*sqrt(2)*(-3*I*a^3*b^2 - I*a*b^4 + (-3*I*a^5 -
 I*a^3*b^2)*cos(d*x + c)^2 + 2*(-3*I*a^4*b - I*a^2*b^3)*cos(d*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*
b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3
, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)) - 6*((3*a^5 + a^3*b^2)*cos(d*x + c)^2 + 2*(a^4*b + a^2
*b^3)*cos(d*x + c))*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/((a^8 - 2*a^6*b^2
 + a^4*b^4)*d*cos(d*x + c)^2 + 2*(a^7*b - 2*a^5*b^3 + a^3*b^5)*d*cos(d*x + c) + (a^6*b^2 - 2*a^4*b^4 + a^2*b^6
)*d)

Sympy [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)**(3/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral(sec(c + d*x)**(3/2)/(a + b*sec(c + d*x))**(5/2), x)

Maxima [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/(b*sec(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((1/cos(c + d*x))^(3/2)/(a + b/cos(c + d*x))^(5/2),x)

[Out]

int((1/cos(c + d*x))^(3/2)/(a + b/cos(c + d*x))^(5/2), x)